National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011 25

BIGRAM BASED WORD SENSE DISAMBIGUATION USING NEURAL NETWORK

Tamilselvi P1, Srivatsa S.K°

'Research Scholar, Sathyabama Universtiy, Chennai, TN, India
%st. Joseph College of Engineering, Chennai, TN, India

Abstract

This paper presents a method to solve word sense ambiguity using neural network. Most of the previous word
sense disambiguation approaches were based on neural networks, having limitations due to their huge feature set
size. Here, bigram method is adopted in two ways: post-bigram (liw) and pre-bigram (wr1). Two bigram features
are treated as input for the networks, each defined with one hidden layer with hidden neurons ranging from two
to twenty. The input model is extracted from the sentences in Brown corpus. In this, the performance of the
networks are compared using mean squared error values. Among all networks, trainable cascade forward back
propagation network gives 71.3% of accuracy with pre-bigram.

Keywords: Neural Network, Word sense disambiguation, post bigram, pre bigram.

I. INTRODUCTION

One major problem of Natural language
processing (NLP) is figuring out what a word means
when it is used in a particular context. The different
meanings of a word are listed as its various senses in
a dictionary. The task of word sense disambiguation is
to identify the correct sense of a word in context.
Improvement in the accuracy of identifying the correct
word sense will result in better machine translation
systems, information retrieval systems, etc. Many
research on word sense disambiguation has made it
known that several information can contribute to solve
the lexical ambiguity. These includes surrounding words
(an unordered set of words around the target word),
local collocations (a short sequence of words near a
target word, taking word order into account), syntactic
relations, part-of-speech (POS), morphological forms,
etc (Ng and Zelle, 1997).

With rising of corpus linguistics, the machine
learning methods based on statistics are booming
(Yarowsky, 1992). Disambiguation approach can be
classified into supervised and unsupervised based on
the sentences in the Corpus which are sense labeled
or not. Supervised learning methods have good
learning ability and can get better accuracy in word
sense disambiguation experiments (Schutze, 1998). In
general, data sparseness is a common problem in
supervised learning. This can be overcome by data
smoothing which is a time consuming task.
Unsupervised word sense disambiguation never
depends on tagged corpus and could realize the

training of large real corpus coming from all kinds of
field. This method may overcome data sparseness
problem to some extent. It is clear that the two kinds
of disambiguation methods have their own advantages
and disadvantages, and can't supersede each other.

(Pedersen, 2001) experimented the use of
bigrams for WSD with a decision tree and naive Bayes
classifier. He tested different bigrams that occur close
to the ambiguous words (within approximately 50 words
to the left or right of the ambiguous word) as possible
disambiguation features. He applied statistical method
to disambiguate texts using decision tree with bigram
concept.

Some researchers use neural networks in their
word sense disambiguation systems since it is strong
in classification. Concept co-occurrence information was
adopted as input features to disambiguate only nouns
using multilayered feed forward neural network.
(You-din chung, Sin-Jae Kang, Kyong-Hi Moon and
Jong-Hyeok Lee, 2002).

(Zhimao Lu, Ting Liu and Sheng Li, 2004)
extracted mutual Information (M) of the words as input
vectors for back-propagation neural network. The
network is tested with maximum feature sets varying
from ten words from left and ten from right with respect
to ambiguous word. When the number of features
increases, the sparseness is unavoidable. Smoothing
is really required to overcome the above problem and
to improve the performance.

26 National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

We propose a bigram based sense
disambiguation method using different neural networks.
Only two features, the ambiguous word and immediate
left word (post bigram) or immediate right word
(pre-bigram) are taken for disambiguation process. We
proceed this paper in such a way to describe the pre
disambiguation process in the next section,
disambiguation process in section 3, results discussion
in section 4, way of improving the accuracy in section
5 and finally, conclusion in section 6.

IIl. PRE DISAMBIGUATION PROCESS

A. Tokenization

Tokenization is the process of breaking up the
sequence of characters in a text by locating the word
boundaries, the point where one word ends and
another begins (Palmer 2000). This was not seen to
be a serious problem for researchers working on
English and similar languages, where word boundaries
generally coincide with space characters.

B. Compound Words Separation

It is the process of breaking up the compound
words defined with “~ into individual words. It is always
better to have individual words for disambiguation
process. Individual words always dominate in
contributing their features for disambiguation and also
rectify the data sparseness to some extent.

C. Morphological Formation

Different forms of a word with suffix attached tags
such as ‘s, ‘ed’, ‘ing’, ful' etc, are brought into their
original form by removing the tags. If this process is
not done, feature vectors are defined individually for all
different form of a word, which leads to memory
wastage that will ultimately slow down the process.

D. PoS-Tagging

In PoS-tagging, each word must be assigned its
correct Part-of-Speech, such as noun, verb, adjective
or adverb. The number of tags used by different
systems varies a lot. Some systems use fewer than 20
tags, while others use over 400. Many systems for
Part-of-Speech tagging have learnt statistical models
from a training corpus. An early example was CLAWS,
the Constituent Likelihood Automatic Word-tagging
System (Leech at al, Atwell 1983), which learnt a

“Constituent Likelihood” model from the tagged Brown
Corpus. In this research, PoS is assigned using Hidden
Markov Model (P. Tamilselvi, S.K.Srivatsa, 2010).
Probability of next word is extracted from word
transition probability matrix and its PoS is extracted
from emission matrix, and finally, entire terms (words)
in the sequence (sentence) is assigned with its PoS
tag. More than 97% accuracy is reflected on short
sentences and above 85% accuracy for long
sentences, having more than 20 words.

lll. DISAMBIGUATION PROCESS

The disambiguation task is achieved through four
steps: collecting ambiguous words from preprocessed
input sentence, feature extraction for ambiguous words,
selecting data from lexical library and training all neural
networks, and finally, extracting the sense from neural
network. Disambiguation process is shown in Fig-1.
Generally, a sentence may have more than one
ambiguous word. WordNet (Fellbaum, 1998) is used
here to separate the ambiguous words from the input
sentence.

A. Lexical Library Construction

Sources of sentences are taken from Brown
Corpus. Brown corpus sentences are refined in two
forms: [word PoS] or [word PoS sense sense-tag].
Words are separated by ‘I in the refined sentences.
PoS of DT, CC, CD, PRP, PRP$ etc are stored as
first form and PoS of NN, VB, RB, JJ etc as second
form (P. Tamilselvi, S.K. Srivatsa, 2010). An example
of refined form of a sentence is given in Fig-2.
Collections of refined Brown Corpus sentences are
referred as lexical library, having more than 5000
sentences. To vectorise the Parts of speech features
in Brown Corpus, they are categorized into 17 groups
having constant values from .1 to .17. Ambiguous
words with sense value, sense-tag and their bigram
PoS information are stored as decentralized lexical
forms (P. Tamilselvi, S.K. Srivatsa, 2009) in 26
separate files (‘a’ to ‘Z’), having 74530 ambiguity words
with a maximum of 8726 words in ‘s’ and a minimum
of 56 words in X

Tamilselvi et al : Bigram Based Word Sense...

Preprocessing task Disambiguation task

Input Sentence
tokenization

Training Data

P W,

Text cleaning 3

| Cleaned input text | > W,

Compound word¢ process -

Splitting compound words
into individual words

Mnrphological¢ formation

Extracting Morphological
forms of words > W,

Parsing #

Part of speech tag
attachments using HMM

y

Neural network

Feature + Extraction

Post bigram Pre bigram
htw W Correct

(Sense of
Ambiguity wordsV list ambiguity
Ambiguity words list word

preparation

Fig. 1. Disambiguation Process

It PRP | recommend VB 1 2:32:01:: | that IN | Fulton NNP 1
1:03:00:: | legislator NN 1 1:18:00:: | act VB 1 2:41:00:: | to TO
| have VB 5 2:30:00:: | these DT | law NN 2 1:10:00:: | study
VB 12:31:02:: | and CC | revise VB 1 2:32:00:: | to TO | the
DT | end NN 4 1:09:02:: | of IN | modernize VB 1 2:30:00:: |
and CC | improve VB 2 2:30:00:: | them PRP |

Fig. 2. Example of Refined Brown Corpus Sentence

Decentralized training data for the neural network
is represented as in Fig-3. Feature vectors are as
matrix having C4 & C5 columns for post bigram and
C5 & C6 for pre bigram. Target output is C3 with C2
columns.

Ct C2 C3 C4 C5 C6
Ambiguity | Sense Sense- Left word [Ambiguity | Right
Word tag POS word word

constant | POS POS
value constant | Constant
value value

Fig. 3. Format of Decentralized Text

B. Different Neural Networks

Five different neural networks, namely,
feed-forward back propagation network (M1), Elman

27

back propagation network (M2), trainable cascade
forward back propagation network (M3), pattern
recognition network (M4) and feed forward back
propagation network with feedback from output to input
(M5) are taken for process.

Almost all networks are designed to have a single
hidden layer having neurons ranging from two to
twenty. Tangent Sigmoid transfer function is applied in
hidden layer and liner transfer function is used in output
layer. Levenberg-Marquardt back propagation function
is used for training. Gradient decent with momentum
weight and bias learning function is used for learning.
To measure the performance, mean squared error
function (mse) is used. The networks are adopted and
trained by changing the weights repeatedly for
producing better result.

IV. RESULTS

More than 500 sentences from Brown Corpus
which are not a part of decentralized lexical library are
taken and tested with all networks. Disambiguation
accuracy is given in table-1. The performance is
measured by ‘mse’ in all five networks, given in table-2
(post bigram) and table-3 (pre bigram). From the tables,
it is clear that, the trainable cascade forward back
propagation network (M3) is having least average mse
values in both post bigram and pre bigram methods.
Disambiguation performance can also be viewed as a
chart for each word after training session.

A sample of performance chart is shown in Fig-4.
Training sessions of the five networks are given in
Fig-5. Sense disambiguation performance is also
calculated using the basic MATLAB command fic’ &
‘toc’ (stop watch timer) for all types of networks, shown
in chart-1 (post bigram) and chart-2 (pre bigram).
Disambiguation accuracy is good in M3 (71.3%) than
M2 (70.6%) network, shown in table-1, even though,
the minimum average processing time taken by M1 is
lesser (3 seconds for M1 and 5 seconds M3).

Table 1. Disambiguation Accuracy

% of Disambiguation Accuracy
Network Type Post bigram Pre Bigram
M1 69.1 70.6
M2 68.5 63.6
M3 70.6 71.3
M4 68.5 65.7
M5 58 65

28 National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011

IEpectn

[Tstan. Bememiom mune a7 o] Bl B b e

Fig. 4. Performance Chart

V. FUTURE ENHANCEMENT

Other disambiguation methods such as statistic
methods, decision trees etc produce better accuracy.
Even by using Neural Networks with enormous number
of features, accuracy measured from 33.93% to 97.40%
for words with more than two senses and 75% of
accuracy for words with two senses (A. Azzini, C. da
Costa Pereira, M. Dragoni and A. G. B. Tettamanzi,
2008). We have used networks with only two input
neurons, means only two text features, for
disambiguation. The percentage of accuracy varied
from 50% to 86%, and on an average 71.3%. Accuracy
level can be increased by raising the feature size as
four (left two and right two words) or six(left three and
right three) etc.

VI. CONCLUSION

We used different neural networks to
disambiguate all ambiguous words in a sentence.
Networks use the decentralized data set to make the
disambiguation with only two features referred as post
bigram and pre bigram. Among the networks, trainable
cascade forward back propagation network produced
least mse value 0.2483 with 6 neurons in post bigram
and .144 with 8 neurons in pre bigram. And the
network M3 achieved the average accuracy of 71.3%.
We recommend the network M3 with 8 neurons as the
best network architecture among networks we tested.

Post Bigram o) vy 5wz mwia w s

« 08

g 06

=]

5 04

g

g

5 0.2

&

E 0

g N S O 00 O N & W o O

A 2 22 2 o4 a4 4 d A4
2 2 2 2 2 2

Number of Neurons in Hidden Layer

Fig. 5. Average disambiguation Time

Tamilselvi et al : Bigram Based Word Sense... 29
Pre Bigram =M1 =M2 s M3 mM4 m M5
. 0.7
Tg 0.6
z 05
Z
= 04
£ 03
g 0.2
2 01
& 0 -
E NS W oD O NS W oo
g Z2ZZ2Z2 950 da0A
; 2 £ Z2 2 Z2 Z
" Number of Neurons in Hidden Laver
Fig. 6. Average disambiguation Time
Table 2: Post bigram performance Analysis
Neural mse values [Post bigram]
Network
Model | N2 | N4 | N6 | N& | Nto | N12 | N4 | Nt | n1s | Nz |AVeraee
M1 (05651 |0.6719 |0.6188 |0.5583 [0.5643 |0.5612 |0.4796 |0.6615 [0.5553 [0.5934 |0.5830
M2 (0.6536 |0.563 |0.5912 |0.5571 [0.5799 |0.563 |0.5830 [0.5907 (0.6126 [0.5909 |0.5885
M3 |0.4020 (0.2491 |0.2483 (0.3400 |0.4221 (0.3072 |0.5433 [0.5576 |0.5804 |(0.5860 |0.4296
M4 (0.6037 |0.6686 |0.5550 |0.4308 [0.5681 |0.3801 |0.6943 |0.5385 (0.7054 [0.6014 |0.5746
M5 [0.9966 |0.9966 |0.9966 |0.9966 [0.9966 |0.9966 |0.9966 |0.9966 [0.9966 [0.9966 |0.9966
Table 3. Pre bigram performance Analysis
Neural mse values [Pre bigram]
Network
Model N2 N4 N6 N8 N10 N12 N14 N16 N18 N20 |Average
M1 |0.2748 |0.6422 |0.5865 |0.3625 |0.339 |0.2871 |0.5627 |0.5343 |0.5368 |0.608 |0.4734
M2 |0.2978 |0.5549 |0.6257 |0.6073 |0.6789 |0.5964 |0.5451 |0.562 [0.5995 |0.583 |0.5651
M3 |0.4027 |0.2551 |0.3052 |0.144 |0.5941 |0.5859 |0.5336 |0.5303 |0.6674 |0.5412 |0.4559
M4 [0.6105 |0.4728 |0.531 [0.4649 [0.4256 |0.2865 |0.5789 |0.5418 |(0.5244 (0.5411 |0.4977
M5 |0.876 |0.876 |0.876 |0.876 |0.876 |0.876 |0.876 |0.876 |0.876 |0.876 |0.876

30

National Journal on Electronic Sciences and Systems, Vol.

2, No.1, April 2011

B Editor - C:\Documents and Settings\ser\Wy Documents\MATLABAann Trr.m - |O1X|
Fle Edt Text Go Cel Tools Debug Desitop Window Help]
NTEl iMB206 (39 e D by T yideo, sae Damos, or read Gatting Started. x

T = Neural Network Training (nniraintool X -
B sl |x [0, 2 Bulos lanezlsisel e
LA T EETHOD -1V eural Network
253 - |
254 - clear inpll oucl;
255 = inpli=cellZmac (inpl); b
256 = it (ve==12)
257 0 disp('stop');
258 - end;
259 1 inp2=conZseq{inpil'}: Algerithms
260 - outZ=conZseqout);
261 = cntl=
262 = rand('seed’,.0001);
263 L] net=pevnarx (inpll’,ouc,20)
264 A necenewpr (inpll',ouc,20) ;| [Frogress
265 nec=newct{inpll’,out,20 Epoch: 0 3 Reraliors 100
266 nec=nevalm(inplil’,ouc,20) Tare: 0:00:00
267 - net=nevwif (inpll’,ouc,20); Performance: 0.00
268 — net,.ctrainParam, lr=.5; Gradent: 100810 &
269 — net.crainParam.epochs=100; M 1,008+10
270 net.inpucweights(i, 1) . learnF| Valdation Chacks: 0 5) =15
21 net.inputveighta(l,1) . initFe| - :
272 net.bisses(1).initFen=' inicz]| plots by Paralel Desiiop Wﬂ"" "W — =
273 nec.IV¥{1,1)=[0 0 0 0 O O 0;0) I O risand v AB W g
. 18 T80 [y =
275 Trairing State piatt o
m - pelinposiivi]: - b7 v | L3 Select datato plot -
278 pl=numicell(p): Akt il J fepichs — S Mn
279 :
2680 — [cinpl cinpl]=size|inpll'); i 4 4
281 L] 1f (cinpl»4) ' Minimum gradient reached. 14 14
282 L1 [net cr]l=crain(net,inpll’,ou
283 3 end: ® ® foudie>
‘234 = veabs iround (siminet.n'ii1:

“lanTm x| sowcem

4 stant a

Ld] 2=l
% ambwords-samps ® aTLm X rewteminpbd % ptetbt x mpsowcem x p |4 Start] Stopped n debugger

W MATLAS

B Editor - C:\Documents and Settings\User\My DocumentsWATLABAannTrr.m - [BX Command Windaw
Fle Edt Text Go Cel Took Debug Desitop Window Help w n x| Fle Edt Debug Desitop Window Hebp
MEA $sRaB20 539 Aenf eRAFal e Al al o MATLAB? Watch this id
_H [E B 0 %% _-LI” T ‘I’& %%' ﬁ. Neural Network Training [nntraintool)
%= | T end: Neural Network
247 - end;
248
248 L] plottools(‘on'):
250
251 = if (loop~=0)
252 1YY AR HETHOD - IV
253 = gef;
254 - clear inpll out;
255 = inpll=cellZmat (inpl):
256 = it (v==1Z)
257 @% disp{'stop'): Trainng: (G St Descenk Barkur i aotion Wik idantioe Laarming Rake: {trarod
258 - end; ¢ Mean Squared Error (10|
259] inp2=conZseq(inpll’): DakaDivision: Random | e
260 - outZ=conZseqout):
261 - ent1=3; STOCHE
262 - rand{'seed', .0001): Epoch: o I izeesos | 10 ¥
263 Y net=newnarx (inp1l’',out,20) 0:00:00
264 L] net=nevpr (inpll', out, 0.617 0.00 -
265 L] net=pevct (inpll',out,20); 1.21 1.00e-10 — EI X
266 - nec=newelm({inpll’',out,20): & q 6 : W_W Hep
267 % net=nswff(inp1l', out,20); F) | @ | nts and SettmgetiserMy DocumentsMATLAB v (] 1
268 — net.trainParam. le=.5; E
269 = net.trainParam.epochs=100;
270 ¥ net.inputweights(1,1) . leacnF| ——— bt = LR 3
27 L] net.inputweightsil,1) .initFe mmmmm -
272 L] net . biases(1).inicFen=' inity =
3 ¥ net.IV(1,1)=[0 0 0 0 0 0 0:0) Lepochs L L -
::; 3 nnet.bil)=0; " 4
e | e o Opening Performance Plot :‘ :“
2 - p=[inposlivi]: ° [00171 0.79%8
‘258 3 vl=numicell (vl : 08254 2.5097 &

| anTmm x| source.m

* ambwords-samples x| anndr.m

an

x| rewtemrptit x ngtesttdt x ipsourcem x P 4 Staet] Stopped in debugger

Fig. 7. Neural Network training

Tamilselvi et al :

14
252
253 =
254 =
255 =
256 -
257 @%
2568 —
259 %
260 =

261 =

262 =

B Editor - C:\Documents and Settings\ser\y Documents\MATLAB\ann 7rr.m
Fle Edt Text Go Cel Tooks Debug Desitop Window Help
NER $BABIC 09 - Heanf

21 |x K| O

KETHOD - IV

clear inpll outi;
inpll=cellZmat (inpl);
1t [v==12})
disp('stop');:
end;
inp2=coniseq(inpil');
outZ=conZsegiout):
cnti=3;
rand{'seed’, .0001);:
net=nevnarx (inpll',out,20)
net=nevwpr (inpil' , ouc,20);

net=neves (inpll', ouc,20) ;

net=nevelm(inpll' , out,20)
net=pewif (inpll', out,20):
net.trainParam. lr=.5;
net.trainParam.epochs=100:
.inpuctweightail, 1) . learnF|
net. inputveighta(l, 1) .1nicfc
net.biases|(1).initFen='1n
net. IW(1,1)=[00000C
nnet.b{1)=0;

net

p=[inposlivi]:
pl=numicell (p):

[tinpl cinpl]=size(inpll'):
1t (cinpl>4)
[net tr]=train(net,inpil’,ou
end;

v=abs (round (siminet.o' |11 :

Bigram Based Word Sense...

Progress
Epoch: U] 4 iterations. 100
Time: 0:00:00
Performance: 0.158 0.158 0,00
Gradent: 1.00 & _ l6le12 1.00e-10
Mu: 0.00100 . 1,00e+10
vidienchods: 0 [] ¢
Plots

Training State | (it

el >

Jouble >

Ld]
Clamnfirm | sorcem x ambwordssamples % aanTrm x| newtemnpbit % inptexttd % Mm_ib

o7 w [0 Selact datato plot

Min

L

| # Start| Stopped in debugger

& maTLA8
Fle Edt Text Go Cel Tooks Debug Desitop Window Help
NEM SRR 0D Aawf
Bl -0 sl x HeE| 0
FEE (s ¥ssyy . HETHOD- IV
253 = get;
254 - clear inpll out;
255 = inpil=cellZmat (inpl):
256 = if (w==12)
257 @% disp('stop'):
250 = end;
259] inp2=coniseq(inpll');
260 - outZ=conZseqout);
261 = cntl=j;
262 - rand('seed',.0001)
263 % net=newnacx (inpll',out,20)
264 - netsnewpr (inpll',out,20) Progress.
265] nec=nevct (inpll',out,20); Epoch 0 .I 100
266 L nec=nevelm(inpll',ouc, 20) Tie: IT
267 3 nec=nevif (inpll',out,20); Paformance: 0.554 0.554 0.00
268 = net.trainParam, lr=.5; Gradient: 1.00 0421 1.008-06
269 = net.trainParam.epochs=100; vabdation Checks: 0 3 6
270 3 net. inputweights(1,1) . learnF
271 % net.inputveightsil, 1) .initFc] Plots
272 % pet.biases|{1).initFen='inicy bug Paralel Desitop Window Help
273 3 net.I¥(1,11=(0 0 0 0 0 0 0:0f | L Detfommarics J & 0 F) G| s and SettingsiUserMy DocumentsiMATLAE ¥ [1-] 1)
274 % nnet.b(1)=0; [Traning State | (pheetrartate Lot Nowt
275 ot
27 - tie: l J + el 2 LT
277 - p=[inposliv}]: [Receiver Operating Characteristic J it e [Select datato plot -
278] pl=numiecell (p):
27 Plok Interval: J 1 epochs - Mn | M -
280 - [cinpl cinpl]=size(inpll’'); J . 4
281 L] if (cinpl>4)
282 L] [nec crl=train{nec,inpll’',ou v Validation stop. :" :4
283 % end; @ o ouble > 00065 1.0283
<284- v=absiroundisiminet.o'111; doudie > 1.0002 3.3451 5

W MaTLAR

Fig. 8. Neural Network training

32 National Journal on Electronic Sciences and Systems, Vol. 2, No.1, April 2011
] & g Iz
B C[E]X) - [B[X]
File Edt Text Go Cell Tools Debug Desktop Window Help ~ p x [File Edt Debug Desktop Window Help el 2
= TR R LY Dy oy O g D s 4oy » — T) New to MATLAB? Wakch this Video, see Demos, or read Getting Started. x
e = = -) Neural Network Training (nntraintool -~
BB -0 |+ | +[11 |x|sfe |0 B ()
252 N E E I Neural Network
253 = gof:
254 — clear inpll out2: Layer —
255 = inpill=cellZmat (inpl); r =
|-
256 — it (v==12 =
! ! Input ‘:Q M
257 @ disp(‘stop');
258 — end: o l @ i
259 i n2seq (inpll g w I\
260 = outZ=conZseq(out); | h \
261 — cnt1=3: { _I \
262 — rand('seed',.0001); [\ -
263 — net=newnarx {inp1l',out,20) : /'
264 v 1 ', out =
265 Algorithms
266 Training: Levenberg-Marquardt
267 ,ou Performance: Mean Squared Error
268 - net.trainParam.le=.5; Deka Diviskort: *Randoim =
269 — net.trainParam.epochs=100;
Pragress
271 Epach: o [3 iterations 100 g (= (L]
272 Time: 0:00:00 g Parallel Deskiop Window Help
273 Performance: ta1 1.21 0.00 & =0 F) @ ||ints and Settings\User\My Documents\MATLAB v] (&)
274 Gradient: 100 | _2.17e-07 1| 1.00e-10 ;
2 Mu: 0.00100 [1.00e+11 Looe+in [hetsNew
276 = tic Validation Checks: o i]] & w Oa x
277 - p=[inposi(v}]: - 7 v [ED Select data to plot -
278 pl=nur 1({p): R Min Max
279 [Performance | Ty ~If
280 — rinpl cinpl]=size(inpll'}; —_———
o ! _p L. p] {topaaty | Training state | 4 4
5 = —— 14 14
282 -
283 Plot Tnterval;) 1 epochs } I
) ouble> 0.0171 08577
| 284 v=absfround{siminet.n'i11: ouble> 16875 1.6875 o
ann7rm x| source.m % ambwords-samples % ann7rm % ned o Maimum MU reached.

‘4 Start

[%0 sriramajoyam (Com... | B MaATLAB [) MaTLAg 7.10.0(R...,

™) command Window

l" Editor - C:\Documen, .

]) Figure |

(1]

(2]

(3]

(4]

(5]

(6]

«) Neural Network Tral...

Fig. 9. Neural Network training

REFERENCES

A. Azzini, C. da Costa Pereira, M. Dragoni, and A.
Tettamanzi. Evolving Neural Networks for Word Sense
Disambiguation, HIS'08, pages 332-337, LNCS,
Springer, Septermber 2008.

Atwell, E, 1988. Transforming a Parsed Corpus into a
Corpus Parser in Kyto, M, lhalainen, O &Risanen, M
(editors), Corpus Linguistics, Hard and Soft:
Proceedings of the ICAME 8th International
Conference on English Language Research on
Computerised Corpora, pp 61-70, Rodopi.

Hinrich Schutze, Automatic word sense discrimination,
Computation Linguistics, 1998, 24(1), pp.97-124.

Leech, G, Garside, R & Atwell, E, 1983. The Automatic
Grammatical Tagging of the LOB Corpus ICAME
Journal of the International Computer Archive of
Modemn English Vol.7

Ng. H.T. and Zelle J Corpus-Based Approaches to
Semantic Interpretation in Natural Language
Processing. Al Magazine, 1997, 18(4), PP. 45-64.

Palmer, D.D. (2000). Tokenisation and sentence
segmentation. In Dale, R.Somers, H. L., and Moisl, H.

(8]

[9]

(Eds.), Handbook of Natural Language Processing.
Marcel Dekker, Inc., New York, NY, USA.

T. Pedersen, A decision tree of bigrams is an accurate
predictor of word senses, in: Presented at Second
Annual Meeting of the North American Chapter of the
Association for Computational Linguistics, 2001.

P.Tamilselvi, S.K.Srivatsa, Part-Of-Speech Tag
Assignment Using Hidden Markov Model, International
Journal of Highly reliable Electronic System, Vol-3,
No-2, 2010.

Yarowsky. D, Word sense disambiguation using
statistical models of Roget’s categories trained on large
corpora, In: Zampoll, A., ed. Computatuion
Linguistic92. Nantas: Association for computational
Linguistis, 1992, 454-460.

[10] You-din Chung, Sin-Jae Kang, Kyong-Hi Moon and

(1]

Jong-Hyeok Lee, “Word Sense Disambiguation in a
Korean-to-Japanese MT System Using Neural
Networks”, COLING 2002 Workshop on Machine
Translation in Asia, pp. 74-80, 2002.

Zhimao Lu, Ting Liu, and Sheng Li. Combining neural
networks and statistics for chinese word sense

Tamilselvi et al : Bigram Based Word Sense...

[12]

[13]

disambiguation. In Oliver Streiter and Qin Lu, editors,
ACL SIGHAN Workshop 2004, pages 49-56.

P.Tamilselvi, S.K.Srivatsa, Decentralized E-Dictionary
(DED) for NLP task, Proceedings of ICMCS
International conference on Mathematics and computer
Science, India, 2009.

P.Tamilselvi, S.K.Srivatsa, A Study on Lexicographical
Information using open source lexical databases,
Proceeding of NCRTCSE National conference on
Recent Trends in Computer Science and Engineering,
2010.

77

33

[14] C. Fellbaum. WordNet: An Electronic Lexical

Database. MIT Press, Cambridge, Massachusetts,
1998.

T. Tamilselvi obtained her MCA in
1995 and M.Phil (Computer Science) in
2003. Her research interest includes
natural language processing, case
based resoning, data decentralization
etc. She published more than 10
papers in conferences and journals.

